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Abstract

Tumor classification is a well-studied problem in the field of bioinformatics. Developments in the field of DNA chip design have

now made it possible to measure the expression levels of thousands of genes in sample tissue from healthy cell lines or tumors. A

number of studies have examined the problems of tumor classification: class discovery, the problem of defining a number of classes

of tumors using the data from a DNA chip, and class prediction, the problem of accurately classifying an unknown tumor, given

expression data from the unknown tumor and from a learning set. The current work has applied phylogenetic methods to both

problems. To solve the class discovery problem, we impose a metric on a set of tumors as a function of their gene expression levels,

and impose a tree structure on this metric, using standard tree fitting methods borrowed from the field of phylogenetics.

Phylogenetic methods provide a simple way of imposing a clear hierarchical relationship on the data, with branch lengths in the

classification tree representing the degree of separation witnessed. We tested our method for class discovery on two data sets: a data

set of 87 tissues, comprised mostly of small, round, blue-cell tumors (SRBCTs), and a data set of 22 breast tumors. We fit the 87

samples of the first set to a classification tree, which neatly separated into four major clusters corresponding exactly to the four

groups of tumors, namely neuroblastomas, rhabdomyosarcomas, Burkitt’s lymphomas, and the Ewing’s family of tumors. The

classification tree built using the breast cancer data separated tumors with BRCA1 mutations from those with BRCA2 mutations,

with sporadic tumors separated from both groups and from each other. We also demonstrate the flexibility of the class discovery

method with regard to standard resampling methodology such as jackknifing and noise perturbation. To solve the class prediction

problem, we built a classification tree on the learning set, and then sought the optimal placement of each test sample within the

classification tree. We tested this method on the SRBCT data set, and classified each tumor successfully.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The past few years have seen the development of large
expression data sets from oligonucleotide arrays and
cDNA microarrays. These new technologies have
yielded a wealth of data, the analysis of which offers
the promise of new insights into the functions of genes
as well as the development of new molecular taxonomies
of cancers. The identification of genes with similar
expression patterns may lead to a better understanding
of the regulatory networks underlying both healthy
and cancerous tissues. Such developments would have
obvious implications for cancer diagnosis, prognosis,
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and guiding therapy, as well as for the identification of
new targets for treatment.

Class discovery and class prediction are two of the
major bioinformatics problems in the field of gene
expression analysis of tumor samples. Expression data
are collected, usually with a classifier variable that
assigns each sample to one of a number of classes, for
example the diagnosis or type of cancer. Class discovery
is the process of recognizing or defining classes based
solely on the expression data in the absence of classifier
variables. For example, Alizadeh et al. (2000) discovered
two previously unrecognized types of diffuse large B-cell
lymphoma using only gene expression data. The related
problem of class prediction presumes that one is given a
fixed set of classes, perhaps explored with a training set,
and that one seeks to assign unclassified tumors to this
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set of classes, where the classification is based on
expression data. Both problems rely heavily upon the
ability to discern informative genes and the removal of
noise in the data sampling process.
A number of approaches have been developed to

tackle the class discovery problem. Foremost among
these is the method of hierarchical clustering (Eisen et al.,
1998), which imposes a hierarchical structure on the set
of genes (or, alternatively, tissue samples) using a
distance function on the objects undergoing classifica-
tion. Depending on the distance function and cluster
diameter used, one could infer a variety of different
clusterings from the hierarchy.
Another approach to clustering is the k-means

approach (Herwig et al., 1999), which seeks an optimal
clustering of the data around k centroids. A related
approach known as self-organizing maps (SOMs),
described by Tamayo et al. (1999) and Golub et al.
(1999), assigns the gene expression data points to
clusters chosen from among a small number of
prescribed geometries, where each geometry has no
more than k clusters. The former work clustered genes
while the latter clustered tumors. Other approaches
include linear discriminant analysis (e.g. von Heydeb-
reck et al., 2001), the search for separating hyperplanes
(e.g. Furey et al., 2000), and graph-theoretical methods
such as the minimal spanning tree approach of Xu et al.
(2002). A comparison of several methods is given by
Dudoit et al. (2002).
The current work has two applications, one for the

class prediction problem and one for the class discovery
problem. The common thread to both applications is the
construction of classification trees—trees whose leaves
correspond to the items being classified. When some of
the data are classified, we use the tree structure implied
by classified nodes to classify unknown samples. When
none of the input data are classified, we use features of
the tree structure to define classes.
In the current work, we consider gene expression data

measured by cDNA microarrays. We present a method
of imposing a classification tree on a set of tumors, using
the expression data. We present the program METRics
on EXpression Data (METREX), which uses the
expression data to calculate a variety of metrics on
the tumors. We then use standard phylogenetic methods
to fit trees to these metrics to define weighted classifica-
tion trees.
A classification tree is a more detailed structure than a

clustering: it contains not merely clusters and sub-
clusters, but branch lengths in the classification tree can
indicate the degree of separation between clusters.
Longer branches tend to imply greater separation, and
can be understood intuitively to represent more mean-
ingful splits in the data. Our work is closely related to
the minimum spanning tree method of Xu et al. (2002).
Waddell and Kishino (2000) proposed using phyloge-
netic methods for clustering genes using microarray
data. The motivation behind the phylogenetic metho-
dology is manifold: we seek to avoid the geometric
assumptions behind the separating hyperplane method,
and the arbitrary selection of a number of clusters
behind k-means and SOM approaches. Also, a hier-
archical clustering lacks information contained in a
classification tree, namely the degree to which varying
clusters may be separated from each other.
As a proof of method test, we considered a data set on

small, round blue-cell tumors (SRBCTs) presented in
the work of Khan et al. (2001). This study included data
from a 6567-element array, tested over a training set of
63 samples and 25 test samples. One of the test samples
was from the same tumor as a training sample, so we
deleted it from our consideration. Of the 6567 genes in
the data array considered, 96 were selected by Khan
et al. by a method using artificial neural networks to best
distinguish the four groups in question. Thus, our
consideration does not represent ‘‘class discovery’’ in a
pure sense. Information about the tumor classes was
used during the gene selection process. However, this
information was not used during the process of building
the classification tree from the set of selected genes.
Thus, we have essentially chosen a relatively easy
problem for our proof of method analysis. We feel this
is acceptable, as we used the same data set for all the
class discovery methods we examined. We compare
the classification trees generated by this data set with
the clusterings produced by other leading software
packages.
To validate our methods, we applied them to a data

set of 22 breast cancer samples with 3 classes: BRCA1-
mutated, BRCA2-mutated, and sporadic (Hedenfalk
et al., 2001).
We also present a method for using classification trees

to solve the class prediction problem. We do this by
building a classification tree for the learning set, and
then finding the optimal insertion point for each tumor
in the learning set. Presuming the initial classification is
meaningful with regard to pre-defined group labels, the
placement in the tree can suggest a labeling for any test
data.
2. Expression data preprocessing

2.1. Notation

We shall use the following notational conventions.
Most mathematical symbols shall be referred to using
italics. Following a standard convention, we shall use
boldface when referring to matrices or vectors, using
capital letters for matrices and lowercase letters for
vectors. The convention will be to use the same letter for
the entries of a matrix as for the matrix itself, except that
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the entries will be lowercase while the matrix will be
boldfaced. For example, the matrix B will have entries

bij

� �� �
: Also, we shall make reference to metrics and

distance matrices. A distance matrix may have entries
that correspond to a given metric. In such a case, the
metric will be referred to, as a function would be, in
italics, while the matrix will be boldfaced with the same
letter. For example, we shall use D with entries dij

� �� �
to

represent the metric D, where dij ¼ Dði; jÞ: Also, it is
traditional to use the Greek letter D (with entries dij

� �� �
)

to represent the input to a tree-fitting algorithm.

2.2. Data collection and gene selection

Let us assume that data is of the following form: for
each of m tissue samples in the set X ¼ fx1;x2;y;xmg;
we are given the expression level for each of n genes in
the set G ¼ fg1; g2;y; gng: This yields a m � n matrix
A ¼ aij

� �� �
; where aij is the expression level in the

sample xi of the gene gj : There may also, in some cases,
be a discrete classifier variable, yi; for 1pipm; assigning
each sample xi to one of a small number of sets or
clusters.
Traditionally, expression data studies have focused on

the following two problems (Dudoit et al., 2002;
Radmacher et al., 2002):

* The tumor classification problem: given A, and an
integer k > 0; define a meaningful classification
function y : X-f1; 2;y; kg: This area of research
is known as class identification or unsupervised

learning.
* The class prediction problem: also known as super-

vised learning, as the user is given not only the
expression data A, but also a classification function y

on a subset of the data, X0CX : The problem is to
extend y to all of X in some meaningful manner.

Where previous studies have used a fixed k, or tried to
maximize the fit over various values of k, phylogenetic
software used on a METREX distance matrix produces
a weighted tree. The edge weights could be used to
classify the data for any value of k. In our discussions of
the data sets examined, we will suppress discussion of
the classification function y, instead making an explicit
classification either by tissue type or by genetic
composition.

2.3. Normalizing the input matrix

Our approach is aimed at fitting a tree metric to the
expression data. But the input matrix A contains
expression levels for a wide variety of genes. Since
different genes activate at different expression levels,
there is little sense in comparing the actual values of aij :
Were we to do tree fitting on the raw data, the tree
topology would be determined by those variables that
have the greatest values. To avoid this problem, we
normalize the input matrix by a linear transformation,
to weigh each gene equally.
Consider the gene gj ; whose values are represented in

the Jth column of A. Let mj denote the mean expression
levels for gj ; and let sj denote the corresponding
standard deviation. We define the normalized matrix B
with entries bij

� �� �
by

bij ¼
aij � mj

sj

:

Normalizing the matrix allows us to compare the
expression levels across columns in a meaningful
manner that weighs each column equally. Also, to
reduce any possible effects of outlier data, we trimmed
any input data more than four standard deviations from
the mean; i.e. we imposed a constraint that bij

�� ��p4 for
all i and j. This constraint was imposed to diminish the
deleterious effect outliers can have on distance-based
tree reconstruction algorithms (Huson et al., 1999). This
constraint was not a factor at all in the analysis of the
two main data sets below, as all of the data points were
less than four standard deviations from the mean, but it
did play a very minor role in the resampling process.
3. classification methodology

In this section, we will define trees, metrics and tree
metrics, and provide a simple method for imposing a
meaningful tree structure on classification data.

3.1. Metrics and tree fitting

Formally, a graph is a pair G=(V,E), where V is a
finite set of objects and E is a set of pairs of objects
from V. A cycle in a graph is a sequence c ¼
ðv0; e1; v1; e2;y; ek; vkÞ; where viavj for 1piojpk; but
v0 ¼ vk; and ei ¼ ðvi�1; viÞAE for all i. Similarly, a path

in a graph is a sequence p ¼ ðv0; e1; v1; e2;?; ek; vkÞ
where viavj for 0piojpk and ei ¼ ðvi�1; viÞAE for all
i, in which case we say v0 and vk are connected by p.

A graph is connected if, for all pairs x, yAV ; there is a
path pxy in G connecting x and y. A connected graph
containing no cycles is called a tree.
Let L be a set of objects, and R the set of real

numbers. Without loss of generality, L ¼ f1; 2;yng: A
metric on L is a function D : L � L-R satisfying the
three properties:

1. Dði; jÞX0 for all i, jAL; with Dði; jÞ ¼ 0 if and only if
i ¼ j:

2. Dði; jÞ ¼ Dðj; iÞ for all x, yAL:
3. For all i; j; kAL;Dði; kÞpDði; jÞ þ Dðj; k)
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We can express D as a distance matrix D, with entries
dij

� �� �
; where dij ¼ Dði; jÞ:

A tree metric is a specific kind of metric. Let T be a
tree, T ¼ ðV ;EÞ; with LCV ; L the set of leaves of T. Let
l be a function: l : E-Rþ: For any pair of leaves i, jAL;
define Pij to be the unique path in T from x to y. Let DT

be defined by

DT ði; jÞ ¼
X
eAPij

lðeÞ:

Suppose D is a metric on L. The tree fitting problem is:
given D, find a tree T such that DT is a good
approximation for D. Tree fitting is one of a variety of
methods that taxonomists use to construct phylogenetic
trees to estimate evolutionary history. Leading tree
fitting algorithms include the Neighbor Joining algo-
rithm of Saitou and Nei (1987), the least-squares
approach of Fitch and Margoliash (1967), and others.
The advantages of using tree fitting include the ability to
use well-refined, pre-existing software packages, whether
commercial (PAUP) or in the public domain (PHYLIP),
and a supporting body of literature which can guide us
to which problems are computationally feasible and
which are not.
Traditionally, tree fitting has been used in a setting

where there is some reason to suppose that the input
metric D can be well approximated by a tree metric.
Most of the methods used in this paper are commonly
used in phylogeny studies, and in classification problems
in other settings. To our knowledge, the current work
represents a novel step of using tree fitting for
classification purposes on the metrics commonly used
in expression data analysis.

3.2. Metrics on expression data

In the field of expression data analysis, it has been
typical to define a metric on a set of genes, and to cluster
the genes based on that metric. In the current work, we
consider a variety of different metrics for our test data
set. We use the Euclidean distance between expression
profiles. Suppose we have m tumors sampled at each of n

genes, and that B is the m � n normalized expression
matrix with entries bij

� �� �
: We calculated each of the

four metrics defined below on all pairs of row vectors of
the matrix B.
Suppose v and w are n-dimensional vectors (e.g.

v ¼ ðv1; v2;y; vnÞ). For pX1; the Minkowski p distance
(also known as the Lp norm) between v and w is defined
as

dpðv;wÞ ¼ Jv� wJp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

vi � wij jpp

s
: ð3:1Þ

For p ¼ 2; this is the traditional Euclidean distance (or
metric), while for p ¼ 1 this is sometimes referred to as
the ‘‘taxicab’’ metric. Similarly, suppose M and N are
two m by n dimensional matrices. We define

dpðM;NÞ ¼ JM�NJp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

Xn

j¼1

mij � nij

�� ��pp

vuut : ð3:2Þ

This Euclidean distance is closely related to the ‘‘mean-
square distance’’ of Chen et al. (1999):

dmsðv;wÞ ¼
1

n

Xn

i¼1

ðvi � wiÞ
2 ¼ 2ð1�

Xn

i¼1

viwiÞ: ð3:3Þ

There is zero mean-square distance between two
variables that exhibit a positive linear relationship
between the two variables (i.e. v ¼ a wþ b; with a > 0),
and a distance of 4 between two variables that are
negatively related to each other (i.e. v ¼ a w þ b; with
ao0), while a distance of 2 separates any pair of
independent variables. The coefficient 2 in Eq. (3.3) is
meaningless for classification purposes, and is dropped
in many applications.
From an information theory perspective, negative

correlation is just as important as positive correlation in
establishing a relationship between two variables. To
take advantage of this symmetry, we also use a version
of mean-square distance where all correlations are
treated the same:

dmsaðv;wÞ ¼ 2ð1�
Xn

i¼1

viwi

�����
�����Þ: ð3:4Þ

We refer to this quantity as the mean-square absolute
distance.
Given an input data set consisting of an array A of

expression data, the program METREX outputs a
matrix of distances between the rows of the normalized
matrix B corresponding to A. METREX can calculate
the L1 or L2 distances, as shown in Eq. (3.1), the mean-
square distance (Eq. (3.3)), or the mean-square absolute
distance (Eq. (3.4)).
Our approach to tree fitting, given an input matrix D

with entries dij

� �� �
representing one of the aforemen-

tioned metrics, is to use a number of different tree
building programs to create trees whose corresponding
tree metrics approximate D: We then compare the tree
metrics to the original metric in order to select the tree
that best fits the data. For the data we considered, we
use the following programs to build the trees.

* We used the program fitch (Fitch and Margoliash,
1967) from the PHYLIP (Felsenstein, 1989) package
to calculate the tree topology T ¼ TW minimizing the
weighted sum of squares (WLS).

X
i;j

dij � dT
ij


 �2
d2ij

(Alternatively, one could use the heuristic search
command hsearch of PAUP (Swofford, 1996) to
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search across tree topologies, minimizing the WLS
criterion.) We refer to this tree as the WLS tree. (To
be more precise, neither fitch nor PAUP’s hsearch

guarantees a global minimum under the settings we
used, but rather a local minimum. An exhaustive
topology search is considered computationally pro-
hibitive.)

* We used PAUP to calculate the neighbor-joining
(Saitou and Nei, 1987) tree, TNJ : (The PHYLIP
program neighbor calculates the same tree.)

* We used the program FastME, the heuristic minimum
evolution program of Desper and Gascuel (2002), to
calculate three trees for each of the data sets. FastME
can build an initial topology iteratively, or start
topology searching from an input topology, using the
minimum evolution criterion to select among topol-
ogies when each topology is assigned edge lengths
according to the ordinary least-squares criterion. We
used the former option to build one tree, and also
built two trees resulting from topology searches using
the fitch and NJ trees as starting topologies. We refer
to the smallest of these three trees as the Minimum
Evolution (ME) tree. (As with the WLS tree, the ME
tree merely represents a local minimum under the
search process, as exhaustive topology searching is
computationally prohibitive. Simulations (Desper
and Gascuel, 2002) have shown that the heuristic
used is powerful in practice.)

Distance-based phylogenetic software such as PAUP
and FASTME can build the trees very quickly, even
when data sets grow to include hundreds of tumors.
Given n tumors and m genes, the distance matrices can
be computed with Oðn2mÞ computations, and the NJ
and ME trees can be calculated with Oðn3Þ and
Oðn2 log nÞ computations, respectively. Computational
experiments in (Desper and Gascuel, 2002) showed that
FASTME takes less than a minute for n=1000.

3.3. Method of selecting tree from various choices from

various algorithms

Given a variety of tree topologies, our next question
was: which topology fits the data the best? Each of the
various fitted trees induced a metric, which was then
compared to the original metric. Each tree metric was
compared to the original distance matrix by the L1 and
L2 norms, defined by Eq. (3.2), and the LN norm,
defined as

JD� DTJN ¼ max
i;j

dij � dT
ij

��� ���:
Given a number of different output trees, we used an

ad hoc method to decide which tree we preferred: given
an input metric D, we sought the tree T whose
corresponding tree metric DT was closest to D according
to the L1; L2 and LN norms. If no tree metric was
superior by all three norms, we selected one closest by a
majority of the three norms, and, no tree was superior
by at least two of the three norms, we looked at the two
trees closest by the L1 and L2 norms, and used the LN

norm as a tiebreaker to decide between those two trees
(discarding the tree that was optimal according to the
LN norm if it was not one of the two trees chosen
already.) This ad hoc protocol was devised based on the
belief that the LN norm is a much poorer measure of
convergence than either the L1 or L2 norms.
Each of these trees yields a metric that is only an

approximation to the original metric. It is important to
note how closely the metric of the preferred tree
approximates the original metric, both in absolute
terms, and relative to the other tree metrics. If two or
more trees are approximately equally good in fitting
the metric, then we should trust only the topological
features shared by the trees.
4. Classification results

4.1. Classification of 87 samples: desired sub-units

We performed tree classification on the data set of
Khan et al. (2001), consisting of expression levels of 96
genes from 87 tissue samples. This tissue samples include
63 samples from four types of small round blue-cell
tumors (SRBCTs), including cell-line and tumor sam-
ples from neuroblastomas (NB), rhabdomyosarcomas
(RMS), Burkitt lymphomas (BL), and the Ewing family
of tumors (EWS). These 63 samples had been used by
Khan et al. to calibrate and validate a number of
artificial neural network models, which were then tested
against a set of 24 blinded test samples including cell
lines and tumors of the 4 aforementioned types, as well
as 5 non-SRBCTs: 2 normal muscle tissues and 3 cell
lines including an undifferentiated sarcoma, an osteo-
sarcoma, and a prostate carcinoma. The 96 genes were
selected by Khan et al. from a total data set of 6567
genes based on their ability to separate the four major
classes. Whereas Khan et al. used the set of 63 samples
as a training set, we blinded the entire data set from the
start in order to test our ability to classify without any
information about tissue types whatsoever.
Our primary goal was that each of the four large sets

(NB, RMS, BL, and EWS) should be separated from the
other three sets in our output tree. Also, we wished for a
classification that would separate cell lines from tumor
samples. We hoped that the five non-SRBCT samples
would not be placed in the tree in a position that would
suggest membership in one of the four major classes,
and that the two skeletal muscle samples would group
together as a subtree. Finally, we hoped that the
classification tree might reveal structural elements
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beyond those provided by the criteria for gene
selection.

4.2. Comparison of ME, WLS, and NJ trees

4.2.1. Euclidean metric

We used METREX to define the metric DE on the set
of samples by setting DEðxi; xjÞ ¼ Jxi � xjJ2 for each
pair of samples xi and xj : We then used FastME, fitch,
and NJ on DE to find the topologies of the trees TME

E ;
TF

E ; and TNJ
E : Edge weights were assigned to the three

topologies to minimize the OLS criterion. We used these
trees to define the metrics DME

E ; DF
E ; and DNJ

E ; respec-
tively. Table 1 shows how each of these metrics
compares to the original metric DE : The fourth column,
the residue, expresses the ratio of the L1 distance
between the input and output matrices to the size of
the input matrix. This provides a meaningful way to
compare the ability to fit trees to different metrics.
From Table 1, we see that the WLS tree fits the metric

DE slightly better than the ME tree does, and that both
do a slightly better job at fitting than the NJ tree does.
All of the output metrics vary by approximately 6%
from the input metric. The WLS tree is shown in Fig. 1.
In this tree, the edge lengths of the tree are proportional
to the horizontal distances of the drawing, while the
vertical distances in the drawing have no meaning other
than to create space for the labels. The leftmost node of
the tree is the root of the tree; we have rooted the tree in
Fig. 1 such that one of the tree subtrees incident to the
root is the subtree comprised of the two skeletal muscle
samples. We chose this node as a root solely because the
skeletal muscle subtree was present in all the trees we
considered. All of the tree drawings in this paper were
made using TREEVIEW (Page, 1996).

4.2.2. Taxicab metric

Given two vectors, u and v, the taxicab metric
between them is defined to be

Ju � vJ1 ¼
X

i

ui � vij j:

We defined the taxicab metric DT on the set of
samples by setting DT ðxi; xjÞ ¼ xi � xj

�� ��
1
for each pair of

samples xi and xj : As with the Euclidean metric, we used
FastME, fitch, and NJ on DT to form the trees TME

E ;
TF

E ; and TNJ
E : We used these trees to define the metrics
Table 1

Fit of tree metrics to Euclidean metric

L1 distance L2 distance LN distance Residue

ME tree 6026.5779 89.4440 4.9379 0.059301

WLS tree 5932.7527 87.8451 5.9943 0.058377

NJ tree 6079.7852 91.0193 5.7338 0.059824
DME
E ; DF

E ; and DNJ
E ; respectively. Table 2 shows how each

of these metrics compares to the original metric DE :
Again, the WLS tree is slightly better than the ME tree,
and both are better than the NJ tree. The WLS tree is
shown in Fig. 2.
Recall that the trees in Figs. 1 and 2 were built using

blinded data, with the labels affixed to taxa only after
the trees were created. The Ewing tumors are labeled
EWS, the rhabdomyosarcoma RMS, the neuroblastoma
NB, and the non-Hodgkin lymphomas either by Lymph
or BL. Additionally, the data included a training set and
25 test samples, labeled with a TEST prefix in each tree.
Each of trees in Figs. 1 and 2 contains the desired

subtrees: the RMS subtree, which itself splits into a
tumor subtree and a cell line subtree; two analogous
subtrees that together constitute a EWS subtree; a non-
Hodgkin lymphoma subtree; and a neuroblastoma
subtree. The lymphoma subtree was particularly set off
from the other three trees; among the other three major
subtrees, the neuroblastoma had the greatest separation
from the other two. The test tissue samples were also
placed in the corresponding subtrees, except for the five
samples deemed to be outside the four main categories
and two EWS samples. The two samples from skeletal
muscle tissue were placed within the RMS subtree. The
Test20-EWS-T sample, which not been confidently
placed in (Khan et al., 2001), was placed close to the
RMS subtree topologically, but it would be more
accurate to say that it was by itself. The Test2-EWS-C
sample, as well as the sarcoma, osteosarcoma, and
prostate cancer samples all were placed roughly in the
middle of the tree, with long pendant edges indicating
small relationships relative to the rest of the tree.

4.2.3. Mean-square distance

We defined the metric Dms to be the mean-square
distance on the data, as defined in Section 3. Recall that
this metric is defined by

Dmsðxi; xjÞ ¼ E½ðXi � XjÞ
2� ¼ 2ð1� E½XiXj�Þ;

where Xi and Xj are the values in the corresponding
rows of the normalized input matrix. As with the
Euclidean and taxicab metrics, we compared the output
trees from NJ, fitch, and FastME. Results are in
Table 3. By all three measures, the WLS tree is the best
of the three. We can see the tree in Fig. 3. We see the
Test2-EWC-C sample nests inside the EWS tree when
fitting to this metric, but the Test21-EWS-T sample now
clusters with the previously problematic Test20-EWS-T
sample in an isolated subtree.

4.2.4. Mean-square absolute distance

Recall that the mean-squared absolute distance is
defined by

Dmsaðxi;xjÞ ¼ 2ð1� JE½XiXj �JÞ;
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Fig. 1. Fitch/WLS tree for Euclidean metric.

Table 2

Fit of tree metrics to taxicab metric

L1 distance L2 distance LN distance Residue

ME tree 57907.9441 851.4441 43.9973 0.071037

WLS tree 56844.5873 832.0697 50.6529 0.069733

NJ tree 62476.7315 930.1912 45.4722 0.076642
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in contrast to the mean-squared distance. As with the
other three metrics, we compared output trees from NJ,
fitch, and FastME. Results are in Table 4.
As with the other metrics, the WLS topology yields

the best fit of the three topologies examined. The residue
for the WLS tree using this method was better than
using the mean-square distance, but worse than for the
other two methods examined. The WLS tree is in Fig. 4.
This tree was the best of all the trees we saw, over all the
methods, at separating the four major groups into
separate subtrees in a clear manner. Even Test20,
Test21, and Test2, the three samples that had fallen
outside the EWS cluster in many tests, were all placed in
the EWS subtree.
The only meaningful way to compare the fit of the

various metrics and the various resulting trees simulta-
neously is to compare the residues. The trees built from
the Euclidean metric had the smallest residues—of these,
the best was the WLS tree shown in Fig. 1. This tree has
most of the characteristics we seek: four major subtrees
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Fig. 2. Fitch/WLS tree for taxicab metric.
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corresponding to the four cancer sub-types, and also
tumor subtrees within the EWS, RMS, and NB subtrees.
As the 96 genes were not selected for their ability to
discriminate between tumors and non-tumors, the
presence of these tumor subtrees represents true class
discovery.
The three non-SRBCT cancer samples were placed in

an unresolved position in the center of the tree, as were,
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Table 3

Fit of tree metrics to mean-square metric

L1 distance L2 distance LN distance Residue

ME tree 1302.81414 19.398149 0.88210 0.109282

WLS tree 1254.32242 18.518600 0.78351 0.105214

NJ tree 1310.57464 19.555791 0.93178 0.109933
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Fig. 3. Fitch/WLS tree for mean-squared metric.

Table 4

Fit of tree metrics to mean-square absolute distance

L1 distance L2 distance LN distance Residue

ME tree 1069.11540 16.048909 0.88510 0.095066

WLS tree 1026.39922 15.203374 0.76618 0.091268

NJ tree 1071.83410 16.139465 0.93669 0.095308

R. Desper et al. / Journal of Theoretical Biology 228 (2004) 477–496 485
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Fig. 4. Fitch/WLS tree for mean-squared absolute distance.
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unfortunately, two EWS test samples. Also, the two
skeletal muscle samples grouped together in the RMS
subtree; this placement was consistent with the observa-
tion in Khan et al. that the expression profiles of these
two samples were closer to the profiles of the RMS
group than to any of the other groups.
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5. Robustness

5.1. Jackknife test

To test the stability of the classification tree method,
we performed two different tests. First, we performed a
jackknife test. The jackknife method (Efron, 1982)
consists of taking one data point from the data and
omitting it, and then performing the analysis on the
remainder of the data. Traditional leave-one-out analy-
sis removes one data point and creates a clustering on
the remaining (n-1) data points. It then inserts the nth
sample into the fixed pre-existing clustering. With our
methods, the clustering is not fixed on the subset of (n-1)
data points, so we did not pursue such an analysis.
Instead of deleting one tissue sample at a time, we

tested the robustness of the tree structure by jackknifing
the genes. We considered each of the 96 data sets
generated by omitting one gene, and each resulting tree.
From this set of 96 trees, we formed a consensus tree,
using a standard tree consensus program consense from
the PHYLIP package. This program forms a consensus
tree including all edges included in more than half of the
96 input trees, and some other edges also, to form a
bifurcating tree. Each edge in the tree has a jackknife
value: the number of input trees that contained an edge
corresponding to the same split of leaves (tissue
samples). The idea to use consense in this manner
was suggested by (Belbin et al., 2002).
We performed such a jackknife test for each of the

three algorithms, for each of the three metrics under
consideration. The consensus WLS tree for the Eu-
clidean metric was of the same topology as the WLS tree
on the entire data set. The consensus WLS tree for the
taxicab metric is shown in Fig. 5. Each internal node in
the tree is labeled with a value between 1 and 96. This
number is called the jackknife value: it counts the
number of trees constructed from the partial data sets
which include the split defined by the subtree to the right
of said node. For example, all 96 jackknife trees include
the split defined by the four neuroblastoma tumor
samples, but only 81 jackknife trees contain the split
{NEUROB.C5, NEUROB.C8}. Note: in contrast to the
edge lengths in the earlier tree figures output by the
distance algorithms, the horizontal distances in the
consensus trees have no meaning.
Most of the splits corresponding to our predefined

clusters have very high jackknife values in the consensus
tree: the BL and NB subtrees have jackknife values of
96, the maximum possible, and the major EWS subtree
has a jackknife value of 89. Some ambiguity is caused by
the difficulty our algorithms had in placing the sample
labeled TEST20-EWS-T. In fact, referring back to the
original analysis (Khan et al., 2001) of this data point,
we see that the initial classification of this sample as
EWS was tenuous: only 40% of the ANN models placed
this sample within the EWS cluster, while 30% placed it
within the RMS cluster.
Figs. 6–9 summarize the relevant jackknife values for

the various trees with regard to the Euclidean metric,
the taxicab metric, the mean-squared metric, and the
absolute mean-squared metric. The four major groups
were preserved in all the consensus trees, as were the
tumor subgroups of RMS, NB, and EWS. In some
cases, the cell line subgroup was split into two subtrees
in each of these groups. In those cases, the jackknife
values given below reflect the larger respective subtrees.
We see that the consensus trees for all four metrics

have full support for the BL, NB, NB.T and NB.C
subtrees. The Neighbor-Joining algorithm yields much
lower jackknife values, however, for the other subtrees.
The Fitch/WLS approach is less sensitive (i.e. more
consistent with higher jackknife values) for the mean-
squared metric, while the Minimum Evolution tree is
slightly superior to the WLS tree for the Euclidean
metric and the absolute mean-squared metric. Of the
four metrics, it is clear that the taxicab metric is the most
sensitive to small changes in the data set (and hence the
least trustworthy).

5.2. Noise test

When using a hierarchical clustering algorithm, one
must consider how it performs in the presence of noise.
To test the robustness of the classification tree method,
we performed the following test 100 times:

* For k=1–100, we created a new input matrix AðkÞ

from A by multiplying each entry aij by ð1þ dijÞ;
where the values (dij) are chosen independently from
a normal distribution with mean m ¼ 0 and standard
deviation s ¼ 1:

* We then performed the steps in Section 4 on each
of these modified data sets, to produce trees
T1;T2;y;T100:

* We then again used the program consense from the
PHYLIP package to form a consensus tree on the
data.

An example of such a tree is in Fig. 10. As with the
jackknife tree, the numbers assigned to the internal
nodes reflect how many of the 100 noisy samples
produced a FastME tree with the corresponding split.
Also, we note with interest that this consensus tree
correctly classifies the TEST20 sample, which was
difficult for the original algorithm to classify.
Since the amount of noise chosen was arbitrary, the

consensus tree resulting after noisy perturbations is not
being presented with a statistical justification for the
original topology. Further analysis would be required to
make such an argument. The topology would become
increasingly unstable if the amount of noise added were
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Fig. 5. Jackknife Fitch tree for taxicab metric.
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to increase; however, the degree to which one should
expect this to happen is beyond the scope of the current
work. Nevertheless, in a manner similar to the jackknife
test, the noise sensitivity test provides some information
as to the relative confidence of various branches within
one tree. Also, both jackknifing and noise sensitivity
testing give us a good idea as to the relative merit of the
various metrics and various tree-fitting algorithms for
our purposes.
The results of the noise resampling tests are summar-

ized in Figs. 11–14. The noise sensitivity tests neatly
parallel the jackknife tests. Again, the taxicab metric is
seen to be the most sensitive, and least appropriate, of
the four metrics. However, the consensus NJ tree on the
perturbed Euclidean metrics could not accurately
reconstruct the RMS and EWS subgroups. The FastME
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tree was extremely consistent again with the Euclidean
metric and the absolute mean-squared metric, and the
Fitch/WLS tree was again the best for the mean-squared
metric. Based on the above results, we would conclude
that the taxicab metric is inappropriate, and would
recommend using FastME for the Euclidean metric or
absolute mean-squared metric, and Fitch/WLS for the
mean-squared metric.
6. Classification of breast cancer tumors

Having established a general protocol in our exam-
ination of the SRBCT data set, we tested this protocol
against a second data set. We considered the data set
from Hedenfalk et al. (2001), consisting of 3225 genes
measured from 22 breast cancer tumors. The tumors
divided into three groups: seven tumors with BRCA1
mutations, eight tumors from seven patients with
BRCA2 mutations, and seven sporadic tumors, one of
which contained a hypermethylated BRCA1 promoter
region. Hedenfalk et al. considered only two binary
classification questions, namely, whether each tumor
carried a BRCA1 or BRCA2 mutation, respectively.
Our attention focused on 51 genes, selected by
Hedenfalk et al. using a method based on an F-test
to be those genes whose variation in expression best
differentiated among the three types of cancers.
We considered two metrics on this data set: the

Euclidean metric and the mean-squared metric. (We
dismissed the mean-squared absolute metric after noting
that it was identical to the mean-squared metric for this
data set.) For each metric, we considered the Minimum
Evolution tree and the Fitch tree, yielding four trees
altogether. All four trees shared the following features:

* All seven of the BRCA1 tumors clustered together in
one subtree.

* All eight of the BRCA2 tumors clustered together in
another subtree.

* The seven sporadic tumors lay between the BRCA1
and BRCA2 subtrees, mostly as leaves off a main
path between the two main clusters.

* The sporadic tumor with a methylated BRCA1
promoter region was the sporadic tumor closest to
the BRCA1 cluster.

The trees resulting from the correlation metric were of
particular interest, as the edges connecting the sporadic
tumors to the tree were much longer, on average, than
the edges pendant to the BRCA1 or BRCA2 tumors. In
fact, the six longest edges in the tree are pendant edges
connecting six of the seven sporadic tumors to the
backbone of the tree. Fig. 15 shows the fitch tree for the
correlation metric, which displays all of the properties
listed above. This tree is shown in radial form to give a
better picture of relative distances.
We also created jackknife trees for each of the two

metrics, and each of the two tree-building algorithms. In
each of the four resulting jackknife trees, the majority of
the jackknife values were perfect scores of 51, and nearly
all of the jackknife values were well above 40. The
Euclidean metric was slightly less sensitive to jack-
knifing; the fitch jackknife tree for this metric is shown
in Fig. 16.
7. A class prediction algorithm using phylogenetic

methods

Class discovery is just one of the possible applications
of phylogenetic methods to the field of expression data
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analysis. In this section, we examine a method for class
prediction using taxonomic distance methods.

7.1. The class prediction algorithm

Recall that, in the field of tumor classification, class

prediction is the process of assigning labels to a set of
unknown tumors using information gained from a set
of labeled tumors. Our approach will be to use a
classification tree generated from tumors that have been
previously classified. Suppose we use i=1yt to label the
different types of tumors, and we are given a learning set
L, L ¼

St
i¼1 Li; such that all of the tumors in Li are of

type i. Given a test set X, the general method is as
follows:

* Apply the methods of Section 3.2 to define a metric D
on L.
* Use ME, NJ or a least-squares method to define a
classification tree T on L.

* Check that the topology of T agrees with the
partition L ¼

St
i¼1 Li i.e., each subset Li induces a

subtree of T. If not, T is not suitable as a guide to
future classification. (Note: this rule need not be
strict. A tree that comes very close to perfectly
partitioning the data might be usable if a small
number of offending tumors were trimmed from the
tree. This difficulty did not arise with the SRBCT
data set.)

* For each xAX ; define the metric Dx on the set
L,fxg:

* Use an optimization method (least squares or
minimum evolution) and the metric Dx to find the
optimal insertion point for x in T to create the
tree Tx:
* For each edge e ¼ ðu; vÞ in T, let Te be

the tree formed by removing e, creating a
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new node w, and adding the edges (u, w) (w, v) and
(w, x).

* Let f ðeÞ be the value of Te under the given
optimization criterion (e.g. if using the minimum
evolution criterion, f(e) would be the sum of the
edge lengths of Te).

* Choose Tx ¼ Te such that f(e) is optimal (minimal
for our measures of optimality).

* If the placement of x is within one of the trees Ti

generated by the set Li; then x is predicted to be of
class i. If x falls outside of all the subtrees T1; :::Tt we
leave x unclassified.

7.2. Results

We tested the method of Section 7.1 on the SRBCT
data set. This data set was divided by Khan et al. into a
set of 63 labeled samples and a set of test samples
including 20 SRBCTs, 3 non-SRBCT tumor samples,
and 2 samples from healthy tissue (skeletal muscle). One
of the SRBCT test samples was from a patient that had
also provided a learning sample. The two samples in
question had virtually identical expression profiles, so
we discarded the second (test) sample from the patient in
question, as its inclusion would be uninteresting.
We decided to use the Minimum Evolution

method on the Euclidean metric, as this combination
had proven to be highly consistent in the jackknife
and noisy sampling tests. This tree neatly divides into
four subtrees corresponding to the four types of
SRBCT.
All of the 19 SRBCT test samples were placed in

the correct subtrees by this method, and the other
two non-SRBCT samples were optimally placed in the
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center of the tree. Fig. 17 shows the optimal insertion
point for the sarcoma test sample, in the interior of
the tree, separated from the four major subtrees. Fig. 18
shows the optimal insertion point for TEST19, one
of the EWS tumor samples. It is optimally placed in
the EWS-T subtree. The two skeletal muscle samples
were placed in the RMS subtree, which is consistent
with their placement in the class discovery trees, and
with their placement by the ANN methods of Khan
et al.
8. Comparison to other methods and discussion

We have presented a new method of clustering of
microarray data from tumors. The phylogenetic method
has the advantage that the clusters are not fixed,
allowing reasonable placement of samples that do not
belong to any of the tumor categories. The geometric
representation of the output gives some idea of how well
the samples cluster. By using a jackknife test we can get
a concrete measure of the confidence in each split in the
clustering. By constructing the consensus tree from the
trees created by repeatedly adding noise to the data, we
can get a numerical assessment of the confidence in the
clustering. We have demonstrated our method on the
SRBCT data set of (Khan et al., 2001) with good results.
The same SRBCT data set was used Culhane et al.

(2002) to test a method of supervised clustering called
‘‘Between Group Analysis’’. Their method also gave
good results, but had difficulty placing one of the
neuroblastoma test samples, which did not cause
difficulty for any other methods. Grate et al. (2002)
also used SRBCT data set as a test of a two-
category supervised classification method, but they
distinguished between cell line samples vs. tumor
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samples, instead of attempting to distinguish the four
categories of tumors.
In this section, we compare the phylogenetic method

to other unsupervised class discovery methods. Note
that we use the word ‘‘unsupervised’’ even though the
process of gene selection was itself supervised. It would
be desirable to develop a method to select the most
important genes without using a training set, but such a
task is beyond a scope of the current paper. None of the
algorithms we consider actually use the tumor labels
while building clusterings, thus they still qualify as
unsupervised algorithms even when the data selection
process is supervised. This usage of ‘‘unsupervised’’ is
consistent with (Langley, 1996, Section 8.4).
We tested the widely used GENECLUSTER software

(Tamayo et al., 1999, version 2.1) and the EXCAVA-
TOR software (Xu et al., 2002, version 1.0) because they
seemed close in spirit to our approach. We also tested
the widely used hierarchical clustering program CLUS-
TER (Eisen et al., 1998, version 2.13.1). All three
packages were tested using default settings on the same
87 SRBCT set with 96 genes. We used the normalization
described above, not the normalization options in these
three software packages. GENECLUSTER and EX-
CAVATOR are both easy to install and use, and the
outputs are easy to interpret.
We tried GENECLUSTER using 2–6 clusters, and we

summarize here the results using 4 clusters, which
unsurprisingly gave the best results. For 4 clusters the
output geometry can be either 1� 4 or 2� 2, and these
gave slightly different results because TEST5-Sarcoma-C
was placed in the NB cluster in the 2� 2 geometry and
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in the EWS cluster in the 1� 4 geometry. In either
geometry, 19/20 test samples that are SRBCTs were
placed correctly, and the TEST20-EWS-T sample was
placed incorrectly in the RMS cluster. TEST20-EWS-T
and 4 of the 5 non-SRBCTs ranked 2nd–6th highest in
‘‘distance to centroid’’ of their clusters, giving some
indication that they are outliers. However, this criterion is
not perfect; the highest distance was for TEST21-EWS-T,
while TEST13-Sk.Muscle ranked 14th or 15th highest
in ‘‘distance to centroid’’. The principal disadvantage of
the GENECLUSTER method for unsupervised learning
is that it does not identify the preferred number of
clusters.
The EXCAVATOR software uses an information

theoretic criterion and correctly predicted that there are
4 clusters in the SRBCT data. All samples, except for
TEST20-EWS-T were correctly classified. The TEST3-
Osteo-C, TEST5-Sarcoma-C, and TEST11-Prostate
samples all come out as leaves in the EWS cluster. The
two skeletal muscle samples form a pendant ‘‘cherry’’
(two-leaf) subtree in the RMS cluster. The edges
connecting TEST20-EWS-T and the 5 non-SRBCTs to
their clusters are 5 of the 9 longest edges in the output,
again giving an imperfect indication that these classifi-
cations are suspect. The principal disadvantages of
EXCAVATOR are that it does not come with a
visualization tool and it does not provide any assess-
ment of confidence in the predictions.
We tested Eisen’s clustering software CLUSTER on

the SRBCT data set. The resulting clustering was
inferior to the classification tree produced by the
phylogenetic method. CLUSTER placed the sample
labeled NEUROB.C3 in the rhabdomyosarcoma clus-
ter. Also, two Ewing’s sarcoma samples, EWS.T13 and
EWS.T4 were also falsely placed in the in RMS cluster;
an alternative explanation is that these two EWS
samples and the sample labeled RMS.T7 fall outside
any large cluster. CLUSTER’s weaknesses motivated
the development of GENECLUSTER, EXCAVATOR,
Between Group Analysis, etc.
The Fitch trees were the best at fitting the various

metrics we considered. The Fitch tree for the mean-
square metric accurately classified all the SRBCTs into
four major clusters, including the TEST20 sample,
which had proved troublesome for other classification
methods. Unlike simple hierarchical methods, fitted
trees contain information reflecting the relative con-
fidence in various clusters and subclusters, namely the
length of the respective edges. They also lend themselves
to quick resampling analysis.
Jackknifing is a quick way to test the confidence of

each cluster, and noise perturbation demonstrates the
robustness of the solution. The resulting consensus trees
demonstrated which subtrees were more reliable than
others. Furthermore, the consensus trees produced
superior topologies than simple tree fitting done alone.
We also tested the phylogenetic method on the breast
cancer data set of (Hedenfalk et al., 2001). The tree-
fitting methodology neatly created classification trees
that separated tumors with BRCA1 mutations from
tumors with BRCA2 mutations. Sporadic tumors
appear in the tree as topological leaves relatively distant
from the path between the two main clusters.
In Section 7, we demonstrated the utility of phyloge-

netic methods for the problem of class prediction. The
classification tree generated by the learning set neatly
separated all of the cancer subtypes in question. Using a
simple minimum evolution criterion, we found optimal
insertion points for all of the data in the test set. All of
the SRBCT samples were properly classified, and the
three non-SRBCT cancers were placed outside of any of
the four groups. Although most of the class discovery
methods could easily be similarly modified to approach
the question of class prediction, we did not pursue this
idea, as it would likely require modifying software for
which source code is not distributed.
We have considered the applicability of standard tree

fitting methods from the field of phylogeny to the
problems of class discovery and class prediction from
tumor expression array data analysis. This avenue of
research is similar to the CLUSTER package that
produces hierarchical clusterings using Pearson correla-
tion, as well as the program EXCAVATOR of Xu et al.
that finds minimal spanning trees. All three approaches
result in tree structures on the set of tumors. But where
both hierarchical clustering and minimal spanning trees
are iteratively formed based entirely on the iterative
consideration of pairwise data, the trees resulting from
phylogenetic software work to minimize global func-
tions that implicitly force the simultaneous considera-
tion of all first-order correlations. Also, in contrast to
the dendograms produced by the simple hierarchical
method, fitted trees contain information reflecting the
relative confidence in various clusters and subclusters,
namely the lengths of the respective edges.
In an unsupervised setting, the phylogenetic approach

does not require the user to preset a fixed number of
clusters—this is an advantage it shares with EXCAVA-
TOR over the geometric algorithms such as k-means
and the SOM approach of Tamayo et al. Also, the tree
structure lends itself for easy resampling analysis using
noise perturbation or jackknifing (or bootstrapping for
larger data sets). The tree structure can lead to a cluster
interpretation in some cases. The obvious method for
selecting a cluster would be to search for large subtrees
connected by long edges, such as the Lymphoma subtree
in Fig. 1. Also, one could use resampling techniques and
select subtrees with high jackknife or bootstrap values.
But the transition from a phylogeny to a clustering
dendogram would entail discarding information and
thus we feel that the weighted tree should be considered
the final product of this approach.
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In conclusion, tree fitting is a useful tool for
classifying tumors based on expression data. In the
present work, we have demonstrated its suitability for
the problem of class discovery, with the caveat that we
used supervised gene selection—a problem that needs to
be addressed in future work. We have also demonstrated
suitability for the problem of class prediction, with no
such caveat. For both problems, the Euclidean metric
was very useful in conjunction with a minimum
evolution approach, as was the mean-square metric in
conjunction with a weighted least-squares approach. We
would recommend using both combinations for classify-
ing data, and would also recommend using resampling
techniques to verify the various topological features of
any classification tree. Software to transform microarray
output files into input files for tree-fitting programs, and
to compare various output tree metrics, is available by
e-mail from the authors.
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